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It is proved that two-dimensional spin-l/2 XYZ models can be mapped onto 
generalized Ashkin-Teller models, in the first approximation of a realization of 
the decomposition scheme proposed by Suzuki. Consequently, it is shown that a 
large class of quantum spin models can be investigated analytically within the 
present approximation. Some analytic and numerical results are explicitly 
obtained with respect to thermal and critical properties in some interesting 
cases. It is also pointed out that the present mapping suggests a procedure to 
overcome the well-known negative sign problem in performing Monte Carlo 
calculations of frustrated quantum spin models. 
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1. I N T R O D U C T I O N  

The system s tudied  in the presen t  p a p e r  is the mos t  pr imi t ive  case of  the 
pa th - in tegra l  fo rmula t ion  of  q u a n t u m  spin systems given by  Suzuki,  who 
presented  the equivalence theorem tha t  d -d imens iona l  q u a n t u m  systems are  
m a p p e d  on to  ( d +  1) -d imens iona l  classical  systems, with the use of  the 
general ized Tro t t e r  formula .  (1'2) In  general ,  the pa r t i t i on  funct ion Z for the 
re levant  q u a n t u m  system can be sys temat ica l ly  a p p r o x i m a t e d  as 

Z =  Tr  exp(--f l~4 ~ = l im Z(n)  (1.1) 
n ~ o o  

with the n th  a p p r o x i m a n t  

fH ,}" Z(n)  = r r  e x p ( - f l ~ p / n  (1.2) 
- - p  
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where we may use any decomposition of the hamiltonian: ~f~ = ~p ~p. The 
path-integral or classical representation of the nth approximant yields a 
classical system with many-spin interactions in the (d+ 1)-dimensional lat- 
tice, which consists of d-dimensional real space and a one-dimensional 
"time" dimension. The latter direction is introduced to express noncom- 
mutativity, namely, the quantum effect, according to the number n in 
Eq. (1.2). 2 We call the new direction the Trotter direction (or quantum 
direction) and call n the Trotter number. The analysis of the resultant 
classical models is of great importance in studying thermodynamic proper- 
ties of quantum systems, and many investigations concerning them have 
been made with the use of Monte Carlo and analytic methods, (3-9'12) based 
upon the above equivalence theorem. (2) 

In the present paper we focus upon the first (namely n =  1) 
approximant Z(1). For the original quantum models, Z(1) is the most 
primitive approximation and it may give a behavior quite different from the 
original one at low temperatures. However, it turns out that Z(1) shows an 
interesting ordering process and phase transitions. Thus, Z(I) would be 
worth studying on its own. Moreover, it gives of course the reference data 
for the Monte Carlo simulation with n = 1, which is a starting point to 
further approximations (n > 1). 

In fact, Lagendijk and De Raedt 19) first found a nontrivial closed-form 
solution of the two-dimensional spin-l/2 X Y  model for the n--1 
approximant. They showed the existence of a phase transition characterized 
by the logarithmic divergence of the specific heat at a finite critical tem- 
perature, and they also showed that out-of-plane (z direction in spin space) 
magnetization does not appear and out-of-plane susceptibility does not 
diverge at any temperature. The in-plane behavior of the system was not 
investigated by them. In the present study an explicit realization of such a 
decomposition is presented, and detailed information about the two-dimen- 
sional spin-l/2 systems within the n = 1 approximation is obtained. In par- 
ticular, we investigate the in-plane magnetic properties. 

The content of the present paper is as follows. In Section 2 we give an 
n = 1 approximant for the two-dimensional quantum X Y Z  model, which 
forms a realization of the general decomposition scheme. (2) For this pur- 
pose, the corresponding classical representation is constructed by using the 
generalized Trotter formula. In Section 3 we show that the representation 
thus obtained can be mapped onto Ashkin-Teller models by the use of spin 
transformation and dual transformation. In Section 4, taking advantage of 
the mapping, we obtain the thermal and critical properties of the present 
approximant in both uniform coupling cases and frustrated ones. In Sec- 
tion 5 a summary of our results and a discussion are given, including 
prospects for future studies. Finally, we illustrate how the present 
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approximant can evade the so-called "negative sign problem" which occurs 
in Monte Carlo simulations of frustrated quantum spin models. (~~ 

2. A P P R O X l M A N T  A N D  C L A S S I C A L  R E P R E S E N T A T I O N  

For  the two-dimensional spin-l/2 system of interest we consider the 
Hamiltonian described by 

~(( = ~ h b (2.1) 
b 

with the pair-spin interaction 

hb = -Jx(b) a ~ @ -  Jy(b) aya y -J~(b) aTa ~ (2.2) 

where the sum runs over all the nearest neighbor bonds b =  (0") on an 
L x L square lattice (L = even), {a~, a[ ,  a~} are Pauli matrices located at 
each site i = (ix, iy) for ix, iy = 1, 2,..., L, and we impose the periodic boun- 
dary conditions upon both sides of the lattice. Here note that every 
strength and sign of the interactions {J~(b),Jy(b),J~(b)} may vary on 
every bond. 

To define our approximant for this quantum system, we first decom- 
pose the total Hamiltonian (2.1) into the sum of sub-Hamiltonians. Our 
decomposition is given as follows 

~ = ~ 1 +  ~2 + ~3 + ~4 (2.3) 

~i = 2 hb = 2 ~ h(ix,iy)(ix + i,iy) 
b e { l }  ix=odd iy 

~ 2 hb=E 2 h(ix, iyj,ix,iy+l) 
be {2} ix @=odd 

E hb= E 
be{3} ix=even iy 

~4= 2 hb=2 Z h(ix,iy)(ix, iy+l) 
b~{4} ix iy=even 

where 

(2.4) 

as is depicted in Fig. 1. This type of decomposition is the two-dimensional 
version of the so-called checkerboard decomposition (CBD) used for one- 
dimensional quantum systems, (11) and we may call this the checkercube 
decomposition (CCD).(12) 

The general formalism immediately allows us to write formally the nth 
approximant as 

ZCC•(n) = Tr  {exp( - f l~ /n )  exp( - fl~2/n) 

x exp( - [~r exp ( - fl~4/n) } n (2.5) 
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with the CCD. Here we are especially interested in the case of the n = 1 
approximant 

zCC~ = T r { e x p ( - / ~ )  exp ( -  flag2) exp( -  flJg3) exp( -  fi~4) } (2.6) 

Note that the pair-spin local Hamiltonians {hb} commute with each other 
within the sub-Hamiltonian {~,.} for i=  14,  respectively. Equation (2.6) 
is, then, expressed in the pair-product form 

zCCD(1)=Tr{ [I{1 Pb l~ Pb H Pb [I Pb} (2.7) 
b } be{Z} be{3}  be{4}  

where pb=exp(--flhb). We remark here that the present approximant 
corresponds to the pair-product model originally introduced by Suzuki. (13) 

From now on let us represent this approximant in terms of classical 
(Ising) spins. This is accomplished by applying the spin version of the path 
integral. For the case of n = 1, we have the following primitive represen- 
tation: 

zCCD(1)= ~ (~] exp(--flJt~)[fl)(fll exp(--fiaf2)17) 
states 

x (y[ exp(-- f l~)[a><a[  exp(-flaf4)[=) (2.8) 

where the sum of states runs over four complete sets: [c~), Ifi), 17), and 
[6). The above formula can be represented as 

z ~ D ( 1 )  = Z Fl RjB FI pJ' 
states be  {1} be {2} 

x I] Pb ~a ]-I Pb a~ (2.9) 
be{3} be{4} 
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Table  I. Local M a t r i x  Elements 

[p] = 

ITT> IT;> I&T> [&&> 

%T11 a 0 0 d 
(T+I 0 c b 0 

<&TI 0 b c 0 
(~,,H d 0 0 a 

where a = exp(Kx) cosh(K_  ), b = e x p ( - K x )  s inh(K+ ), 
c = exp( - Kx) cosh(K+ ), d = exp(Kx) s i n h ( K  ) 

with K~ = flJ, , etc., and K+ = Ky +_ K z 

where pb ~, etc., are matrix elements of local operators: 

Pb ~B= ( a i ~ a T [  Pb ]O'iBaj B )  (2.10) 

giving interactions among four spins ai ~, o-j ~, a f ,  and a 7. Here the sum is 
a ~ a i ~ } .  In the taken over all states of 4N ( N =  L 2) Ising spins { i ,  ai ~, ai ~, 

present paper we take the aX-representation (a x [ a ) = a  Ja), a =  +1) for 
the states. The matrix elements of (2.10) evaluated in this representation 
are summarized in Table I. 

Next, the above procedure is applied to construct an effective lattice of 
the Ising system represented by (2.9). In Fig. 2a we show the L x L x 4 lat- 
tice (checkercube lattice), where the vertical dimension corresponds to the 
Trotter direction and the shaded squares stand for the four-spin interac- 
tions with the Boltzmann weights a, b, c, or d shown in Table I. This is the 
standard way of drawing it, but we can have a more tractable description 
for the effective lattice by a suitable lattice-folding. The resultant lattice 
structure is a 2L x 2L checkerboard lattice, as shown in Fig. 2b. It should 
be noted that the bold arrows in the Fig. 2b, which denote the local trans- 
fer direction, come from those of the lattice in Fig. 2a. From now on we 
refer to this lattice as a a-lattice. 

3. MAPPED ISING REPRESENTATION 

The effective lattice or o--lattice has many redundant spin con- 
figurations that contribute nothing to the partition sum, because of the 
symmetry of the pair-spin interaction. Our purpose in the present section is 
to eliminate these redundant degrees of freedom in order to find an Ising 
representation without any restriction. It should be remarked that our 
procedure here is complementary to the eight-vertex formulation by Lagen- 
dijk and De Raedt. (9) 



188 Onogi, Miyashita, and Suzuki 

i l - - - c _  - 

 U//2 L 
(a) 

or 

d 

Y 

Cr 0( 

(b) 

~ B 

Fig. 2. (a) Unit  cell of the effective lattice: checkercube lattice. (b) Unit  cell of the folded 
effective lattice: a-lattice. 

We make use of  a sort of  spin t ransformation.  (14'15) Let us prepare two 
L x L lattices, dual to each other, with Ising spins z and # on each lattice, 
as is shown in Fig. 3. Next  we consider such a local spin t ransformat ion 
between the old a-lattice and the two new lattices as 

a = ~ ' ~  (3.1) 

where ~ and g are two nearest neighbor  spins adjacent to a, as shown in 
Fig. 3. Because of  the restriction on the a-lattice, this t ransformat ion can 
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~ 

Fig. 3. The z, #-lattice, together with the a-lattice. The z-spins and the #-spins are denoted 
by the open circles and the triangles, respectively. 

be performed consistently all over the lattice. Through the transformation, 
a a-spin configuration corresponds to a twofold-degenerate r-spin and p- 
spin configuration. Any four-spin interaction of the a-lattice is transformed 
to the sum of two kinds of nearest neighbor interactions of the form K2z~z ~ 
and K2'Pml~n and a four-spin interaction of the form K4rkZt#m# ~. We thus 
obtain the first Ising representation for our approximant as follows: 

[I3 / C C D ( I  1 I ~  b ) = ~  ~ Cexp K;(b) zkrz 

d- 2/(2 ' (b*)  ]Am/~n + 2 K4(p)"CgZl#ml~n] (3.2) 
b* p A 

where Zb (Zb*) denotes the sum over nearest neighbor bonds b (b*) of the 
r(#)-lattice, and ~p  denotes the sum over plaquettes with b and b* as 
diagonals. Here the corresponding interactions are given by 

1 cosh K (b) sinh [ K  (b)J 
K2(b) = K~(b) + -~ In ~ K+ (b) sinh ]K+ (b)[ 

rci 
+~- [ 0 ( - K  (b ) ) -  0 ( -K+(b ) ) ]  

1 
K2'(b*)= -~ lnE tanh  ]K+(b)] tanh [K (b)[] 

rci {O(-K+(b)) + O ( - K  (b))} 
4 
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1 tanh [K+(b)[ 
K4(b ) = g i n  tanh [K (b)] 

--a- [0(-/r+(b))- 0(-/r (b))] 

C = 1-[ [cosh K+(b) cosh K_(b) sinh K+(b) sinh K_(b)] TM (3.3) 
b 

where O(x)= 1 for x t> 0 and O(x)= 0 for x < 0. 
Finally we perform the dual transformation (16'17) only for the g-lattice, 

which yields the second Ising representation as follows: 

[II]  zCCD(1)=~ ~ ~ exp L2(b )%z, 
{,} 1.*} 

"q- 2 L 2 ( b )  gkgl "~- 2 L 4 ( b )  Tk'~lg~U~ (3.4)  
J b b 

where the corresponding interaction parameters are given by 

L2(b) =/r~(b), Li(b) = / r / b ) ,  L4(b) = -/rz(b) (3.5) 

Consequently, the n = l  CCD approximant is expressed as an 
Ashkin-Teller model (aS) in which the strength and sign of the interactions 
may vary from bond to bond. 

4. T H E R M O D Y N A M I C  PROPERTIES OF THE n = l  
A P P R O X l M A N T  

By making use of the Ising representation [I]  or [II],  we discuss here 
the thermal and critical properties of the n = 1 approximant for the XYZ 
model defined by Eq. (2.6). We confine ourselves to some interesting cases. 

4.1. Uniform XY Case: Jx(b)=Jx>0, Jr(b)=Jr, and J z ( b ) = 0  

We find from (3.4) that 

K 2 = K~ 

1 
K~ = -- ~ ln(tanh Ky) (4.1) 

K 4 = 0 
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This relationship clearly reveals that the present approximant for the 
X Y  model is decoupled into two independent 2D Ising models, one 
with nearest neighbor coupling constant Kx and the other with 
K* [ = -�89 ln(tanh Ky)] dual to Ky. Therefore we can obtain an exact free 
energy of this system from that of the ordinary 2D Ising modelJ 19) Con- 
sequently, the logarithmic divergence of the specific heat appears at 
KK = Kc and Ky = Kc [sinh(2Kc) = 1 ], which is in agreement with the result 
for the isotropic case (Jx = Jy) by Lagendijk and De Raedt, who studied 
the model in the a z (out-of-plane) representation. ~9) Furthermore, our for- 
mulation allows us to find an in-plane (xy plane) behavior of the 
approximant, namely a two-spin in-plane correlation function defined by 

G(r ) = Tr[ aoX a ~ x exp(--fl~l) exp(--fl~2) 

x exp( -  fl~fg3) exp(--fl~n)]/zCCD(1) (4.2) 

It is easy to show, from the decoupling property (4.1), that 

G(r) = <ff0ffr >o-_lattice 

--~- <'CO#OTr#r >z,#_lattic e 

-= g(r; Kx)" g(r; K*) (4.3) 

where g(r; K) is the correlation function of two spins separated by a dis- 
tance r for the ordinary 2D Ising model with coupling constant K. From 
(4.3) we can deduce the following in-plane critical property. We first con- 
sider the isotropic case (Jx = Jy). It is well known that g(r; K) approaches 
m9 (m, is the spontaneous magnetization) as r goes to infinity when 
T< To, while it shows a power decay with a critical exponent 1/4 at T=  T c 
and an exponential decay when T> To. This property, with the relation 
(4.3), leads to the behavior of G(r) as follows: 

G(r) r~> l Aexp( - - r / r  whenT< >T~ 
(4.4) 

Br-1/2 when T = Tc 

where A and B are constant factors and r denotes the correlation length. 
One then find that the present approximant always shows only short-range 
order (SRO) in in-plane behavior, except for the critical temperature Tc. 
Therefore, we find that the present approximant exhibits a sort of reentrant 
phenomenon, and it seems to show a transition without long-range order 
(LRO). We thus obtain the values of in-plane critical exponents as follows: 

t l=~  not ~ and v= 1 (4.5) 

822/45/1-2-13 
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Fig. 4. Phase diagram in the X Y  case: Jx = J(1 + Axy), Jy = J(1-  ZJxy), where A~y denotes 
the anisotropy parameter of the coupling in the xy plane of the spin space. 

where the exponents r/ and v are defined by G ( r ) ~ r  -~ at T =  Tc and 
~ I T - T c l - v  near the critical point. Furthermore,  assuming the scaling 

relation that 7 =  ( 2 - 7 ) v ,  we also obtain the critical exponent for the in- 
plane susceptibility 

3 
7 2 (4.6) 

These exponents (4.5) and (4.6) concerning the in-plane behavior are the 
important  new results obtained here. Next, in the anisotropic case 
(J~ ~ Jy),  the present approximant  shows a typical reentrant-type of trans- 
itions SRO ~ LRO ~ SRO as the temperature is varied. The individual 
transition is characterized by the same critical exponents as those of the 2D 
Ising model. The phase diagram including the isotropic case is shown in 
Fig. 4. Such a" mechanism of reentrant transition in the present case might 
suggest an idea for quantum reentrant phenomena,  e.g., a successive phase 
transition liquid ~ solid ~ liquid. (2~ 

4.2. U n i f o r m  XXZ Case: Jx(b) =Jr(b) =Jxv(>O) and Jz(b) =Jz 
We find from (3.5) that 

L2 = L'2 = K:,y and Z 4  = --Kz (4.7) 

2 For the mechanism of classical reentrant transition due to frustrated bond structure see 
Ref. 21. 
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This Ising representation corresponds to the isotropic AT model. As a 
result, by using the known phase boundaries of the AT model, we can 
express the phase boundaries for the present approximant of the XXZ 
case. (12"15'22) This is shown in Fig. 5a. In this figure, the solid line denotes 
an exact phase boundary or critical line 

1 
Kz=~ln[sinh(ZKxy)] Kxy> -K7 (4.8) 

(see Appendix A), while those shown by dashed lines are not known exac- 
tly, except for some special points, which are critical points of the 2D Ising 
model. The critical exponents are also known to vary continuously on the 
exact line. (23) Hence it is of interest to explore concretely how the in-plane 
correlation exponent q varies along the critical line in the present case. 
With this motivation we have performed a Monte Carlo simulation. Our 
numerical results are shown in Fig. 5b. Our data show that the so-called 
weak universality (24) is broken along the critical line (4.8) for the n =  1 
approximant of the XXZ case. For our Monte Carlo simulation, see 
Appendix B. 

4.3. F rus t ra ted  Case 

First we consider the XY case: Kz(b)= 0 for any bond, and {Kx(b), 
Ky(b)} are set as in Fig. 6. This is a quantum Villain XY model. According 
to the corresponding Ising representation [II], the approximant of this 
case is decoupled into two independent 2D Ising models with the coupling 
constants {L2=Kx(b)} and {L'2(b)=Ky(b)}. It thus follows that our 
problem is reduced to that for frustrated Ising systems. As a result we find 
that no phase transition occurs for the n = 1 approximant of the quantum 
Villain XY model. 

More attention shall be directed to the frustrated XXZ (including 
isotropic Heisenberg) cases. From the Ising representation [II], the 
approximant is characterized not only by frustrated two-spin interactions 
{L2(b)=Kx(b)} and {L'2(b)=Kx(b)}, but also by the four-spin interac- 
tions {L4(p)=Kz(b)}, which take positive or negative coupling at each 
plaquette. Although the effect of the latter interactions is interesting to 
study, this class of AT models has not been solved yet. This should be 
investigated exactly or at least numerically in the future. It should be noted 
here that one of the great merits of our AT representation consists in the 
fact that Monte Carlo calculations can be performed without facing to 
"negative sign problem," the key point of which will be mentioned in the 
next section. The Monte Carlo simulation along this line is now in 
progress. 
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Fig. 5. (a) Phase boundaries in the X X Z  case. The bold line denotes the exact critical line, 
and the broken lines denote other phase boundaries. Here I indicates the Ising critical point, 
and F the critical point of the F-model. (b) Critical exponent r/ versus anisotropy, 
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Fig. 6. Bond structure of a quantum Villain XY model. The straight line denotes a 
ferromagnetic bond with J,=Jy=J>O, while the wavy line denotes an antiferromagnetic 
bond with Jx = Jy = - J  < 0. 

5. S U M M A R Y ,  D I S C U S S I O N ,  A N D  F U T U R E  P R O B L E M S  

We have shown that the two-dimensional spin-l/2 X Y Z  models can be 
mapped onto Ashkin-Teller models for the n = 1 approximant  with the 
checkercube decomposition. Within the present approximant  Z(1), in par- 
ticular, for the case corresponding to the X Y  model, we have studied the 
in-plane reentrant behavior and obtained some in-plane critical exponents, 
in addition to the result on the out-of-plane property given by Lagendijk 
and De Raedt. For  the case corresponding to the X X Z  model we have 
shown the phase boundaries, including an exact critical line on which the 
weak universality is broken. In the frustrated cases it also has been shown 
that the fully frustrated quantum X Y  model can be exactly solved within 
the n = 1 approximant,  by transforming them into frustrated 2D Ising 
models. 

Let us discuss the nature of the phase transition of the original quan- 
tum X Y  model, which should be of final interest. The high-temperature 
expansion method ( H T E M )  strongly suggests the existence of a phase 
transition at a finite temperature. (25) If we extend the concept of univer- 
sality between "classical" and "quantal" systems, we would expect the 
occurrence of the Kosterl i tz-Thouless transition, (26'27) associated with the 
dissociation of vortices, even for the quantum X Y  systems. The H T E M  
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result, however, does not seem to support  the KT transition strongly. 
Although Monte  Carlo simulations have been performed by several 
groups, (3'7'8) they have found no clear answer to questions concerning the 
values of critical exponents for the quantum X Y  model. In Table II  we 
show critical exponents obtained so far, along with our results as a 
reference. To obtain more conclusive data, we should study systems with 
n/> 2, for which only the Monte  Carlo method is available at the present 
stage. 

Monte  Carlo simulations for the higher (n >~ 2) approximant  in our 
checkercube decomposition scheme are now in progress. (32) It should be 
remarked that the following convergence property for the general nth 
approximant  

I Z -  Z(n)l = O(1/n 2) (5.1) 

was proved very recently in general. (6'28) The size dependence of physical 
quantities such as the specific heat should be investigated after each 1/n 2 
plot. Thus we can investigate the properties of a singularity quantitatively. 

Next we give some considerations on the frustrated cases. Generally 
we meet with a difficulty, namely, the negative sign problem (1~ in studying 
frustrated quantum spin systems by applying Monte Carlo methods follow- 
ing the equivalence theorem given by Suzuki. This problem comes from the 
negative Boltzmann factors of the classical approximant.  The existence of 
negative Boltzmann factors causes the seriously poor  precision of the 
measured quantities at low temperatures (3~ because pathological can- 
cellation occurs between positive and negative contributions to the par- 

Table II. Values of Critical Exponents Investigated 
for Quantum XY Model 

Exponent HTEM ~ n = 1 (exact) b MC c,a Classical e 

~<0 c 
a <0 0 <0 a -oo 
v 1.43 _+ 0.10 1 - -  oo 
7 2.50 + 0.3 3/2 - -  co 
r/ 0 ~< q ~< 0.7 i/2 -- 1/4 

a Ref. 25. 
b The present result, in addition to Ref. 9. 
c Ref. 7. 
a Ref. 8. 
e Ref. 26. 
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tition sum. Keeping this in mind, let us consider again carefully our 
approximate mapping. The negative sign problem surely occurs for the a- 
lattice representation of the n =  1 approximant. However the finally 
mapped Ising representation [ I I ]  or AT representation (3.5) with variables 
(r, ~t*) has only positive weights, and therefore the n = 1 approximant is 
fortunately free of the negative sign problem. This fact shows a hopeful 
route to overcome the problem. Our next work will be to construct a map- 
ped representation only with positive weights for higher approximants 
(n ~> 2). It also should be noted that the mapping a ~ (r, p) in Section 3 
eliminates the redundant configurations, so that the problem of ergodicity 
in the Monte Carlo simulation is removed. Consequently, Monte Carlo 
simulations can be performed very efficiently by adopting an appropriate 
mapping. The present paper is the first version of such a construction. 
Further development along this line is expected to investigate various ther- 
modynamic problems of frustrated quantum systems, e.g., the Anderson 
problem in the quantum Heisenberg antiferromagnet on the triangular 
lattice.(29 31) 

A P P E N D I X  A 

In this appendix we briefly show that Eq. (4.8) gives an exact critical 
line for the n = 1 approximant in the uniform X X Z  case, by utilizing the 
same technique as for the AT model. Some details of the explanation have 
been given previously. (12) 

Starting with the cr-lattice, we can map it onto a staggered eight-vertex 
model on a square lattice in the same way as shown by Lagendijk and De 
Raedt. (9) Denoting the vertex weights by {~ol, ~o2,..., ~o8} on one sublattice 
and {09' 1, o9~ ..... co~ } on the other sublattice, we have 

(.0 3 = 0 )  4 = (O3 = 0 ) 4  = b 

c05 = c06 = co~ = 0~ = c 

~07 = c08 = 09~ = co~ = d 

(A.1) 

where a, b, c, and d are equal to those given in Table I. Just on the line 
defined by (4.8), it follows that c = d  in (A.1), and consequently our 
approximant is reduced to the symmetric eight-vertex model or Baxter 
model. Then we have the following w weights 
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wl - (a + b)/2 

we ~ (a - b)/2 

w3 = (c + d)/2 (A.2) 

W 4 ~ -  ( C  - -  d)/2 = 0 

By interchanging w2 and w4, which does not change the partition function 
Z [ w l ,  w2, w3, w4], (15) we define new vertex weights by 8 = w l + w 4 ,  
b =  wl - w4, ? = w3 + w2, and 7 =  w3 - w2. Concretely we have that fi = g, 
7 =  0. Thus our approximant is furthermore reduced to the F-model. As is 
well known, the F-model has two phases: one is an ordered phase when 
d /g=  g/? < 1/2, and the other is a "disordered" phase for h/? = g/? > 1/2, 
where the correlation length is infinite. The latter phase is always critical in 
the ordinary sense. Therefore it is concluded that the approximant is 
critical on (4.8) for Kxy>~ (In 3)/4. 

Finally, we remark that the axa x correlation for the approximant in 
the general case, which becomes equivalent to the atr correlation on the 
a-lattice, is reduced to an arrow-arrow correlation on the corresponding 
vertex lattice. 

A P P E N D I X  B 

A kind of finite size scaling has been used to calculate values of the in- 
plane critical exponent t/ on the exact critical line (4.8) by the standard 
Monte Carlo method. It is, in general, stated that the thermal average of 
the squared magnetization for two-dimensional systems has a size depen- 
dence of the form (27) 

l n ( ( M 2 ) / N )  _~ (2 - r/) In L + const (B.1) 

on the critical point, for large linear dimension L ( N =  L2). Here, for the 
present system, M implies the in-plane magnetization of the n =  1 
approximant. 

In order to investigate how q varies on the critical line, we first chose 
seven critical points on the critical line with Jz /Jxy  = -0.9, -0.5,  -0.3,  
0.0, 0.3, 0.5, 0.8. At each critical point we carried out simulations according 
to the Metropolis rule for the z, /~-lattice whose size is 2 x (L x L) with 
L = 6, 8, 12, 16 (note that L denotes the linear size of the original quantum 
system). In each run, the first 5000 MCS were discarded to make the 
system reach equilibrium, and the next 50,000 MCS were used to obtain 
thermal properties. Finally, the value of r/ was determined at each of the 
critical points by log-log plot of (M 2)/N versus L. 
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